ADVANCES IN CANCER IMMUNOTHERAPY

James P. Allison, University of Texas MD Anderson Cancer Center
Distinct Mechanisms of Action of Immune Checkpoint Inhibitors

Coralie Backlund, Massachusetts Institute of Technology
Cell Penetrating Peptides Improve T Cell Response to Neoantigen Peptide Vaccines

Matthias Braun, QIMR Berghofer
Tumor CD155 Drives Resistance to Immunotherapy by Downregulating the Activating Receptor CD226 in CD8+ T Cells

Yvonne Y. Chen, University of California, Los Angeles
Engineering Smarter and Stronger T Cells for Cancer Immunotherapy

Shira Cherny, University of Washington
Characterization of Myeloid Cells Subsets in the Tumor Microenvironment of Merkel Cell Carcinoma

AHyun Choi, Novartis Institutes for BioMedical Research
Loss of EMC Inhibits Tumor Growth through Enhanced Adaptive Immune Response

Kelli Connolly, Yale University
Tumor-Draining Lymph Nodes Contain an Untapped Reservoir of Stem-Like CD8 T Cells

Nadine A. Defranoux, Parker Institute for Cancer Immunotherapy
Identification of Key Parameters for Effective Neoantigen Prediction through a Consortium Effort: The Tumor nEoantigen SeLection Alliance

James R. Heath, Institute for Systems Biology
Single Cell Approaches to Analyzing Antitumor Responses

Priti Hegde, Foundation Medicine
Pan-Cancer Analysis of Allele-Specific HLA-I Loss Suggests Widespread Occurrence across a Diverse Range of Tumor Types

Maija Hollmén, University of Turku
Immune Activation with a Novel Anti-Macrophage Antibody (Anti-Clever-1 mAb; FP-1305) in Phase I/II First-in-Human MATINS Trial Patients with Advanced Solid Tumors

Siwen Hu-Lieskovan, Huntsman Cancer Institute
Clinical Testing Strategies against Heterogenous Mechanisms of Immune resistance

Juan C. Jaen, Arcus Biosciences, Inc.
Clinical Applications of Adenosine Pathway Inhibitors

Vandana Kalia, University of Washington
PD-1 Signals Are Critical for Maintenance of CD8 T Cell Memory
Gloria Bora Kim, University of Pennsylvania
Splice Variants as Neoantigens for Cancer Immunotherapy

Yeon Joo Kim, University of California, Los Angeles
Interferon-Gamma-Induced Melanoma Plasticity and Response to PD-1 Blockade Therapy

Puay Ling Lee, Francis Crick Institute
Uncovering Epigenetic Mechanisms of Cancer Immunoevasion

James C. Lee, University of California, San Francisco
Liver Metastasis Mediated Control of Systemic Tumor-Specific Immunity and Response to Checkpoint Immunotherapy

Chang Liu, University of Pittsburgh
Neuropilin-1 Is a T Cell Memory Checkpoint Limiting Long-Term Anti-Tumor Immunity

Georgina V. Long, Melanoma Institute Australia, The University of Sydney
Clinical Trials with Activators of Pattern Recognition Receptors or Oncolytic Viruses

Zoila Areli Lopez Bujanda, Johns Hopkins University
ADT-Mediated Intra-Tumoral Myeloid Infiltration Promotes Resistance to Immune Checkpoint Blockade in Prostate Cancer

Elaine R. Mardis, Nationwide Children's Hospital
ADT-Mediated Intra-Tumoral Myeloid Infiltration Promotes Resistance to Immune Checkpoint Blockade in Prostate Cancer

Stephen Mok, MD Anderson Cancer Center
CTLA-4 Blockade Generates Memory T-Cells with Greater Proliferative and Cytotoxic Capacity than PD-1 Blockade

Antoni Ribas, University of California, Los Angeles
Mechanisms of Primary and Acquired Resistance to PD-1 Blockade Therapy

Theodore Roth, University of California, San Francisco
Highly Parallel Knock-In Targeting for Genome Engineering of Cellular Immunotherapies

Ansuman Satpathy, Stanford University School of Medicine
Single-Cell Genomics in Cancer Immunotherapy

Evan Scott, Northwestern University
Engineered Nanobiomaterials for Cancer Immunotherapy
Debattama Sen, Harvard Medical School
Disrupting Enhancers within the Core Epigenetic Program of Exhaustion Improves CD8+ T Cell Responses and Enhances Tumor Control

Padmanee Sharma, University of Texas MD Anderson Cancer Center
From the Clinic to the Lab: Investigating Mechanisms of Response and Resistance to Immune Checkpoint Therapy

Sohail F. Tavazoie, Rockefeller University
Depleting Myeloid-Suppressive Cells for Cancer Immunotherapy

Eliezer M. Van Allen, Dana-Farber Cancer Institute
Tumor Genomics and Selective Response to Cancer Immunotherapy

Yingxiao Wang, University of California, San Diego
Engineering Remotely Controllable CAR T Cells for Cancer Immunotherapy

Thomas D. Wu, Genentech, Inc.
Peripheral T Cell Expansion Predicts Tumor Infiltration and Clinical Response to Cancer Immunotherapy

Please visit http://keysym.us/cancerimmuno20 for program and other event updates.